APPENDIX
A. Simulated Dataset

For the simulation experiments, we utilize the environ-
mental setup from Ravens [35]. Each task is executed over
100 trials to calculate success rates and state performance.
We set up 8 cameras for data collection.

B. Gaussian Splatting Reconstruction

For Gaussian splatting reconstruction, we follow the im-
plementation provided in [this repository. The framework is
optimized using the Adam optimizer [38] with a learning
rate of 0.001 over 2000 epochs. The loss function used for
training Gaussian splatting is:

fszl—l-O.ZS-(l—fss[M) (17)

, where %71 and Zsspy are L1 loss and structure similarity
metrics between the reconstructed image and ground-truth
image.

C. Dynamic Model Training

Our dynamic model f consists of three components: f,
Jmp> and fge.. The encoder, fepe, is composed of two SAGE
layers [30] with a hidden dimension of 256 and ReL.U acti-
vation functions. The message-passing module, f,,,, includes
two SAGE layers with two recursive message-passing steps.
The decoder, f;.., is composed of a single SAGE layer. The
dynamic model is optimized using the Adam optimizer [38]
with a learning rate of 0.001, without applying any learning
rate scheduler.

For the graph forming part, the distance threshold ® used
was 0.1.

D. Baseline Implementation

In this section, we provide implementation details for each
baseline.

Dynamic resolution [16]. We adapt the official implemen-
tation from this link. To ensure a fair comparison, we convert
our dataset into their format and use the hyperparameters
provided by the authors in the appendix.

NeRF-dy [37]. We implemented this approach using the
source code provided by the authors. To maintain fairness,
we converted our dataset into their format and applied the
hyperparameters provided in their appendix.

NFD [28]. Since the official implementation is not avail-
able, we re-implemented this method based on the hyper-
parameters and network architecture described in the paper
and supplementary materials. We verified the validity of our
implementation by comparing its performance to the results
reported in [28].

DVF [17]. Since the official implementation is not avail-
able, we re-implemented this method based on the hyper-
parameters and network architecture described in the paper
and supplementary materials. We verified the validity of our
implementation by comparing its performance to the results
reported in [17].

E. Real-World Experiments

Franka Panda manipulator and four Intel RealSense D415.
Each task is executed over 20 trials to calculate success rates.


https://github.com/graphdeco-inria/gaussian-splatting
https://RoboPIL.github.io/dyn-res-pile-manip/
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