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Abstract— Recent advancements in learned 3D representa-
tions have enabled significant progress in solving complex
robotic manipulation tasks, particularly for rigid-body objects.
However, manipulating granular materials such as beans, nuts,
and rice, remains challenging due to the intricate physics of
particle interactions, high-dimensional and partially observable
state, inability to visually track individual particles in a pile,
and the computational demands of accurate dynamics predic-
tion. Current deep latent dynamics models often struggle to
generalize in granular material manipulation due to a lack of
inductive biases. In this work, we propose a novel approach that
learns a visual dynamics model over Gaussian splatting repre-
sentations of scenes and leverages this model for manipulating
granular media via Model-Predictive Control. Our method
enables efficient optimization for complex manipulation tasks
on piles of granular media. We evaluate our approach in both
simulated and real-world settings, demonstrating its ability to
solve unseen planning tasks and generalize to new environments
in a zero-shot transfer. We also show significant prediction and
manipulation performance improvements compared to existing
granular media manipulation methods.

I. INTRODUCTION

Neural rendering and view synthesis methods [1], [2],
[3], [4], [5], [6] have enabled a wide set of applications
in scene understanding, 3D reconstruction and representa-
tion. Moreover, they have shown promise in many complex
robot manipulation tasks on rigid body objects [7], [8].
Manipulating granular materials such as beans, nuts, rice,
oats, and other such objects common in daily life remains a
challenging problem, so in this paper we address the question
of whether neural rendering methods, Gaussian Splatting
in particular, provide a good representation for control of
granular media.

Several factors contribute to the difficulty of granular
material manipulation. First, modeling the interactions be-
tween particles is complicated due to the intricate physics
involved [9] and the unknown geometry of individual parti-
cles. Second, accounting for all particles in planning requires
a high-dimensional state [10], [11], which creates challenges
for downstream policy learning or planning algorithms.
Third, visually identifying and tracking individual granular
particles in a pile is nearly impossible due to their self-
similarity, which leads to data association problems, and due
to the inherent partial observability of the setting. This has
led to the majority of existing works that simulate granular
materials doing so without ground truth data from the real
world [12], [13], [14], relying on simulated data. Finally,
accurately predicting particle dynamics is computationally
expensive [9], [15], [16].
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Fig. 1. Our method takes a few multi-view images of a scene and their
corresponding camera poses as input (a) converts them into their Gaussian
splatting representation, (b) learns a dynamics model over these representa-
tions, and (c) performs visual model-predictive control for granular material
manipulation, which requires view synthesis and dynamics rollouts.

To address these challenges, recent efforts have focused on
modeling the visual dynamics of granular piles using highly
expressive neural network latent dynamics models directly
from pixels [17]. However, these models often underperform
compared to linear dynamics models due to a lack of
inductive biases. In contrast, physics-inspired approaches,
such as particle-based models, introduce strong inductive
biases for neural network dynamics models.

In this work, we show that Gaussian splatting [4] over
video frames provides effective representations for down-
stream model-predictive control over granular media. Gaus-
sian splatting is an image rendering and reconstruction
technique originating in computer graphics that represents a
3D scene as a collection of Gaussians (splats), each of which
is centered around points in the scene and is associated with a
single color. An image of the scene from a given viewpoint
is rendered by projecting each splat into 2D and blending
colors where they overlap. This collection of splats that can
also be parameterized by position, and rotation of Gaussian
provides a smooth and continuous representation in terms
of space of the scene, making it particularly well-suited for
modeling video sequences.

Our contribution: We use the Gaussian splats represent-
ing the scene at each time as a state vector that can be manip-
ulated via MPC, effectively lowering the dimensionality of
the image. We learn a dynamics model over Gaussian splats
and show that by doing MPC with this dynamics model



and representation, robots can efficiently handle complex
and precise manipulation tasks involving granular materials.
This representation enables robots to optimize their actions,
anticipate challenges, and adapt to dynamic environments.

We evaluate our approach in a variety of pile manipulation
tasks in both simulation and real-world settings, and we show
that our method outperforms existing baselines both in terms
of dynamics prediction and in terms of task performance.
Our model also demonstrates the ability to solve previously
unseen complex planning tasks. Furthermore, we showcase
the generalizability of our method by transferring a trained
model to different environments with varying object shapes
in a zero-shot setting. 1

II. RELATED WORKS

3D Visual Representations for Manipulation. The use
of 3D visual representations [1], [2], [3], [4], [5], [6] for
robotic manipulation has gained significant traction in recent
years. One of the foundational approaches in this domain
involves the use of 3D point clouds, which provide a de-
tailed geometric representation of objects in the environment.
Works such as PointNet [18] and PointNet++ [19] have been
pivotal in processing and understanding 3D point clouds,
enabling robots to perform tasks like object recognition and
grasping [20]. Voxel-based representations [3] have also been
widely explored for manipulation tasks. By discretizing the
workspace into a grid of voxels, these methods offer a
straightforward way to model the occupancy and structure
of the environment. VoxNet [21] introduced a deep learning
architecture that uses 3D voxel grids for object recognition in
robotic tasks. Similarly, a voxel-based deep Q-network [22],
[23] was developed for robotic grasping, which demonstrated
the effectiveness of 3D voxel representations in manipulation
tasks.

Another prominent line of research involves the use of
implicit neural representations, where 3D shapes and envi-
ronments are encoded as continuous functions rather than
discrete points or voxels. Neural Radiance Fields (NeRF) [1],
[6] is a notable example of this approach, where scenes are
represented as volumetric radiance fields that can be ren-
dered from arbitrary viewpoints. While originally designed
for view synthesis, NeRF and its variants have inspired
applications in robotic manipulation, especially in scenarios
where precise modeling of object geometry and appearance
is critical [24], [25].

Particle Dynamics. Inductive biases, particularly object-
centric representations, have been widely adopted in
learning-based dynamics models. Particle-based representa-
tions serve as strong inductive biases for representing de-
formable objects. In particular, DPI-Net [12] combines a hi-
erarchical particle dynamics model with MPC-based control
for deformable object manipulation. However, particle-based
approaches face scalability issues as the number of particles
increases [26], [27], thereby making them computationally
expensive and challenging to use in practical planning tasks.

1For more details, code, videos, and the paper’s appendix please refer to
our project website: https://weichengtseng.github.io/gs-granular-mani/.

Granular Material Manipulation. Manipulating granular
media by pushing piles of small objects into a desired target
set using visual feedback has been accomplished with models
as simple as linear [17], [11]. Granular material manipulation
presents unique challenges due to the complex and non-linear
interactions of these materials [28]. Traditional approaches
often rely on physics-based models [9], which simulate
individual particles to predict bulk material behavior. While
accurate, these models are computationally intensive and
may not be suitable for real-time manipulation.

To address these limitations, recent research has explored
data-driven methods that learn granular dynamics from ob-
servations [29]. Techniques like neural networks have been
employed to approximate material behavior [28], [16], [17],
enabling faster predictions during manipulation tasks. How-
ever, these approaches often struggle with generalization
across different types of granular materials and varying
conditions. Besides, these granular material manipulations
only represent material in 2D space, which constrains the
potential of 3D manipulation tasks. Our approach leverages
advanced 3D reconstruction technique, which alleviates this
limitation.

III. PRELIMINARIES

Gaussian splatting [4] has emerged as a powerful rendering
technique that can capture the state of the visual world
with a discrete set of 3D Gaussians G = {ni}, where ni =
(gi,si,Ri,si,σ i,ci) represents a 3D Gaussian. Each Gaussian
i is parameterized by its position gi ∈ R3, orientation Ri ∈
SO(3), scale si ∈ R3, opacity σ i ∈ R+, and color ci ∈ R3.
Given a viewpoint whose transform relative to the world
frame is denoted by V ∈ SE(3) and projection function
from the 3D world to the view’s screenspace is defined by
π(x), the color at a pixel coordinate p can be calculated by
sorting the Gaussians in increasing order of their viewspace
z-coordinate and then using the splatting formula:

CRGB(p) = ∑
i∈N

ci
α

i(p)
i−1

∏
j=1

(1−α
i(p)) (1)

α
i(p) = σi exp(gi(p)) , (2)

gi(p) = xiT
Σ̂
−1
i xi ,xi = p−π(gi) (3)

Σ̂i = JVΣiVT JT is the covariance of the Gaussian i projected
into the viewpoint’s screenspace where J is the Jacobian of
the projection function π(x) and Σi =Ri diag(s2

i )RT
i . Further

details about this process can be found in [4].
The parameters of the Gaussian can be updated by mini-

mizing the L1 loss and structural similarity index measure
(SSIM) LSSIM between the reconstructed image and ground-
truth image.

Lrecon(Irecon, IGT ) =L1(Irecon, IGT )+

β (1−LSSIM(Irecon, IGT ))
(4)

where IGT and Irecon are ground-truth and reconstructed
images (with reconstructed pixel p having color CRGB(p)),
respectively. Note that SSIM is calculated using various
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Fig. 2. (a) The dynamics model f, conditioned on the input action ut , predicts the temporal evolution of the scene representation zt. During planning time,
we calculate the task objective c(ZT ,Ztarget) and backpropagate the gradients to optimize the action sequence ut (b) The dynamics model f , conditioned
on the input action ut , predicts the temporal evolution of the scene representation Zt . During planning time, we calculate the task objective c(ZT ,Ztarget)
and backpropagate the gradients to optimize the action sequence ut .

windows of an image. The measure between two windows x
and y of common size N ×N.

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(5)

where µx and µy are pixel mean of x and y. σx and σy are
pixel variance of x and y. σxy is the covariance of x and y.
c1 and c2 are constant to stabilize division.

IV. OUR APPROACH

A. Problem Formulation

Given multi-view RGBD observations Otarget =
{ov,mv}N

v=1 of the target pattern of the granular material,
where ov represents the RGBD image and mv indicates the
corresponding camera pose, we would like to manipulate
the granular material to minimize the cost measurement c
such that the granular material can match the target pattern.
We define the following trajectory optimization problem
over a horizon T

ut = argminut c(ZT ,Ztarget) (6)

Z0 = h(O0), Ztarget = h(Otarget), Zt+1 = f (Zt ,ut) (7)

where h is the perception module that performs Gaussian
splatting and f () is the dynamic model which predicts the
representation’s evolution Zt+1 from the previous represen-
tation and action. The optimization aims to find the action
sequence {ut} to minimize the cost function c(ZT ,Ztarget).
Also, ut ∈ R4 represents the starting position and pushing
direction of the end-effector. To enable learning a dynamics
model for granular materials, we collect a dataset DRGBD =
{(Ot ,ut ,Ot+1)} via a simulator of a manipulator interacting
with particles.

B. Representation of Granular Materials

We leverage Gaussian splatting [4] as the representation
method for image observations of granular materials. In-
stead of initializing the Gaussian splats with a pointcloud
formed from structure-from-motion, as is typically done in
3D scene reconstruction applications of neural rendering,
we lift the RGBD image with the corresponding camera
pose to 3D space and form the point cloud. To ease the
downstream training of dynamic models, we downsample

the point clouds used by initializing the Gaussian splatting
with farthest point sampling [19], which iteratively samples
the farthest point and performs distance updating. Given the
multiview observation {Ot}, we leverage Gaussian splatting
for reconstruction {Gt}. Since we are only interested in gran-
ular materials, we remove the Gaussian that represents the
background or the ones that have high transparency. We then
denote the remaining Gaussians as {Zt}. More specifically,
we transform the dataset DRGBD to DGS = {(Zt ,ut ,Zt+1)}
by training Gaussian splatting reconstruction for each image
frame.

C. Learning a Visual Dynamics Model

Given the dataset DGS, we learn a visual dynamics model
over Gaussian splatting representations. Our dynamics model
f () is formed as a Graph Neural Network (GNN) [30] with
iterative message passing that takes the Gaussian splatting
reconstruction as input and predicts the translation and
rotation for each Gaussian.

To be more specific, to transform Gaussian splitting Zt
into a graph structure Gt = (Vt ,Et), where Vt = {vi

t}i=1...|Vt |
indicate a set of nodes and Et = {ei

t} represent a set of edges.
we create a graph by adding edges between Gaussians if the
L2 distance between the respective vertices is smaller than a
distance threshold ω . We form the node features of the GNN
as (ci

t ,σ
i
t ,Ri

t ,gi
t ,si

t) for node vi
t . f consists of node encoder

fenc with node representation v̄i from vi
t :

v̄i
t = fenc(vi

t , ut) (8)

Then, we have a message-passing encoder fmsg which allows
us do multi-step message passing:

qi,γ+1
t = fmsg(q

i,γ
t ,mean j∈Niq

j,γ
t ), qi,0

t = v̄i
t (9)

where Ni is a set of nodes that connected to node i. Finally,
we have the decoder fdec that transforms node features after
Γ message passing steps to dynamic information

∆ri
t ,∆gi

t = fdec(q
i,Γ
t ) (10)

where ∆ri and ∆gi indicates the displacement and rotation of
Gaussian ni. We then move and rotate the Gaussian:

ĝi
t+1 = gi +∆gi

t , r̂i
t+1 = ∆ri · ri

t (11)



where r is the quaternion representation of R. In the end, we
obtain a set of Gaussians that represents the next image:

Ẑt+1 = {(ci
t ,α

i
t , R̂

i
t+1, ĝ

i
t+1,s

i
t)} (12)

Then, we use the Chamfer distance to train the dynamics:

Ldyna =
1

|Ẑt+1|
∑

n̂t+1∈Ẑt+1

min
nt+1∈Zt+1

Lgaussian(n̂t+1,nt+1)

+
1

|Zt+1| ∑
nt+1∈Zt+1

min
n̂t+1∈Ẑt+1

Lgaussian(nt+1, n̂t+1)

(13)
Lgaussian(n, n̂) = ||g− ĝ||2 +λ (1−|rt+1 · r̂|) (14)

where λ is a hyperparameter that determines the importance
between position and orientation.

D. Planning

Inspired by [31], we leverage the density field

d(x) = ∑
ni∈Z

σi · exp((x−gi)
T

Σ
−1
i (x−gi)) (15)

which indicates whether a specific 3D position x is occupied
by any material and we use it to form the cost function for the
planning algorithm. The cost function used in the planning
algorithm is the following:

c(Zt ,Ztarget) =
1
|P| ∑

x∈P
|dt(x)−dtarget(x)|2 (16)

where P is a pre-defined set of points we would like to
query. This cost helps us measure the difference between
the occupied space in Zt and that in Ztarget .

We integrate the solution to Equation 6 into a MPC
framework using the optimized action sequence in a closed-
loop system. At each MPC step, we follow the procedure
outlined in Algorithm 1, which first determines the appro-
priate resolution for representing the environment. Next, a
combination of sampling and gradient descent is used to
derive the action sequence through trajectory optimization,
employing the shooting method. After executing the first
action from the sequence in the real world, new observations
are obtained, and Algorithm 1 is applied again. This itera-
tive process allows the system to continuously incorporate
environmental feedback and adaptively choose the optimal
resolution as the task progresses. Further details on the task
objectives and MPC hyperparameters are provided in the
supplementary materials.

V. EXPERIMENTAL RESULTS

A. Implementation Details

We implement the entire framework using PyTorch [32]
and PyTorch-Geometric [33].

Simulation Setup. The simulation environment is based
on Pybullet [34], adapted from the Ravens [35] framework.
Throughout both data generation and evaluation, unless
otherwise specified, we use a set of 50 cubic blocks, each
measuring 1 cm in size, along with a planar pusher of 5 cm
in length.

Algorithm 1: Planning algorithm
Data: Current observation Ot , target Otarget , planning

horizon T , the dynamics module f , and
gradient descent iteration N

Result: a sequence of action actions u0:T−1

Get current representation Zt from observation Ot ;
and target representation Ztarget from Otarget ;
Sample K action sequences u1:K

0:T−1 ;

for k = 1,...,K do
for i = 1,...,N do

for t = 0,...,T-1 do
Predict the next step Zt+1 = f (Zt ,ut);

end
Compute the task loss ck = c(ZT ,Ztarget);
update the u1:K

0:T−1 with the task loss;
end

end
kopt = argminkck ;
return ukopt

0:T−1;

Fig. 3. Real-world experiment setup. (a) The robotic manipulator,
equipped with a pusher at the end-effector, moves object piles within the
workspace. Four calibrated RGBD cameras mounted around the workspace
provide visual observations of the environment. (b) The granular materials
used in real-world experiments include coffee beans, peanuts, pistachios,
and almonds.

Physical Robot Setup. The real-world setup features a
Franka Panda manipulator [36] and four Intel RealSense
cameras (see Appendix for further details). The camera
captures a top-down view of the workspace, with images
rectified through homographic warping. Color and depth
thresholding are then applied to extract the object density
field. We directly transfer a model trained in simulation
to real-world experiments. To ensure consistency between
simulation and reality, we resize the input images to match
the workspace size used in the simulation. The pusher has
the same width as its simulated counterpart and is attached
to the robot’s gripper. Fig. 3 shows the granular materials
tested.

Baselines. We compare our approach against several base-
lines, providing a brief description of each below:

• Dyn-Res[16] constructs dynamic-resolution particle
representations of the environment and learns a unified



Fig. 4. Rollout of our dynamics model. We show the rollout predictions of dynamic model in both simulation (left) and real-world data (right). Both
of the rollout results show that the dynamics model prediction is accurate for a few steps.

dynamics model using GNNs. This model allows for
continuous adjustment of the abstraction level. During
testing, the agent adaptively determines the optimal
resolution at each MPC step.

• NFD[28] employs a fully convolutional neural network
that operates on a density field-based representation of
object piles and pushers. This approach leverages the
spatial locality of inter-object interactions and transla-
tion equivariance through convolutional operations.

• NeRF-dy [37] integrates NeRF with time contrastive
learning in an autoencoding framework. It learns
viewpoint-invariant, 3D-aware scene representations. By
constructing a dynamics model over this learned repre-
sentation space, NeRF-dy enables visuomotor control
for challenging manipulation tasks.

• DVF [17] is a strong dynamics model that uses field-
based state representation without inductive biases. DVF
only predicts the start and end position of a straight
push.

We evaluate the entire framework on the following tasks:
• Collecting: pushing the piles into a target region.
• Splitting: pushing the piles into multiple target regions.
• Redistributing: redistributing the piles to match a spe-

cific pattern.
Metrics. In simulation, we perform 100 trials, while for

real-world experiments, we conduct 20 trials. We use two
metrics to assess the performance of the framework.

• Success rate: success is defined as moving all materials
to the target region.

• State error: in simulation experiments, we also measure
the Chamfer distance between the particles in the target
observation and the particles after manipulation.

B. Reconstruction and Dynamics Prediction Results

In Fig. 4, we show the reconstruction of the rollout
trajectories with our dynamic model. We can find that
our approach does capture the granular material, and the
movement of the granular material is also correctly predicted
by our dynamic model. We also provide more novel-view
synthesis results in supplementary.

C. Manipulation Results

As shown in Tables I and II, our approach consistently
outperforms all baseline methods. When comparing our
method to NeRF-dy, we observe significant improvements,
which we attribute to our incorporation of particle clustering.

TABLE I
MANIPULATION SUCCESS RATE IN SIMULATION (MAX = 1.0)

Collection Splitting Redistributing

NeRF-dy [37] 0.67 0.43 0.31
Dyn-Res [16] 0.79 0.72 0.67
NFD [28] 0.89 0.82 0.46
DVF [17] 0.78 0.67 0.55
Ours 0.89 0.88 0.78

TABLE II
STATE ERROR IN SIMULATION

Collection Splitting Redistributing

NeRF-dy [37] 0.0096 0.0620 0.0717
Dyn-Res [16] 0.0179 0.0533 0.0901
NFD [28] 0.0073 0.0310 0.0660
DVF [17] 0.0093 0.0340 0.0919
Ours 0.0027 0.0041 0.0081

This clustering allows for a better understanding of inter-
particle interactions. In contrast, NeRF-dy relies on learning
dynamics through NeRF reconstruction, which lacks the use
of physics-based priors. NFD performs well on simpler tasks
like collection and splitting but struggles with more complex
target patterns.

TABLE III
REAL-WORLD MANIPULATION SUCCESS RATE (MAX = 1.0).

Collection Splitting

Pistachios 0.85 0.80
Almonds 0.85 0.75
Peanuts 0.85 0.85
Coffee Beans 0.65 0.60

In real-world experiments, as shown in Table III, we ob-
serve high manipulation performance across most materials.
Qualitative results are presented in Fig. 5, and additional
demonstrations are available on our project website.

D. Generalization Studies

In this section, we conduct ablation studies to evaluate the
effectiveness of each component.

Number of Views. Figure 6 demonstrates that increasing
the number of viewpoints improves manipulation perfor-
mance by offering a more accurate reconstruction of the
granular material. Our approach achieves higher performance
than NeRF-dy while requiring fewer views.

Generalization to Different Numbers of Particles.
Though our approach was trained with 50 particles, we found



Fig. 5. Qualitative results from real-world experiments. (a) Evaluation of our method on a collection task with different objects than what it was
trained on. The objects vary in scale and physical properties (e.g., almonds and pistachios remain quasi-static during MPC steps, while peanuts and coffee
beans may roll after being pushed). (b) Pushing object piles into two separate target configurations. Our method successfully pushes randomly scattered
objects into the desired locations.

Fig. 6. Manipulation performance with different numbers of viewpoints
as input. Performance increases with more views, providing more accurate
granular material reconstruction.

that it generalizes well to varying numbers of particles (Fig.
7), largely due to the graph neural network we use to model
dynamics. In contrast, NeRF-dy and NFD, which rely on
latent vectors or visual observations, struggle to generalize
across different data distributions.

Fig. 7. Manipulation performance with different numbers of particles
in the workspace. Our approach demonstrates superior generalization
compared to other baselines.

Message Passing in Dynamics. We find that message
passing plays a crucial role in capturing granular material
dynamics. Tasks requiring accurate future state predictions
benefit from additional message-passing steps for precise
manipulation.

VI. LIMITATIONS

Manipulation Efficiency. Granular material dynamics are
inherently complex due to the intricate interactions between
particles. To manage this challenge, we limit the robot arm’s
movement speed, reducing the intensity of particle interac-
tions and promoting more stable and controllable manipula-
tion. Particle Size Limitation. Our framework is less suited

Fig. 8. Manipulation performance with different numbers of message-
passing steps. More steps lead to better performance.

for manipulating very small particles, such as salt, sugar, or
rice. This limitation stems from the difficulty in accurately
reconstructing such tiny particles using Gaussian splatting,
which struggles to maintain precision at smaller scales. We
anticipate however that this would be an issue for any vision-
based policy. Shortsighted Planning. While our method
effectively optimizes for the next best trajectory based on
a global cost function, it focuses on short-term decision-
making. In more complex scenarios, planning several steps
ahead may be necessary to determine truly optimal actions.
Future work will explore longer-horizon predictions and the
development of more efficient sampling and optimization
strategies to facilitate long-term planning.

VII. CONCLUSION

This work presents a novel approach to granular material
manipulation using Gaussian splatting as a latent representa-
tion. By encoding the material’s state into a probabilistic
form, we effectively model and predict the dynamics of
granular interactions. Our integration of this learned model
with Model Predictive Control enables precise and adaptive
manipulation in real-time.

Experiments demonstrate that our method significantly
improves manipulation accuracy and stability over existing
approaches. This highlights the potential of Gaussian splat-
ting as a powerful tool for advancing robotic manipulation,
especially in complex environments. Future work could
extend this framework to other non-rigid materials, further
enhancing the capabilities of robotic systems in dynamic
tasks.
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